Human auditory cortical dynamics during perception of long acoustic sequences: phase tracking of carrier frequency by the auditory steady-state response.

نویسندگان

  • Aniruddh D Patel
  • Evan Balaban
چکیده

We recorded human auditory cortical activity during the perception of long, changing acoustic signals and analyzed information provided by dynamic neural population measures over a large range of time intervals (approximately 24 ms-5 s). Participants listened to musical scales that were amplitude modulated at a rate of 41.5 Hz, generating an ongoing, stimulus-related oscillatory brain signal, the auditory steady-state response (aSSR). The aSSR generated energy at the amplitude modulation rate that was recorded using magnetoencephalography. As in previous work, the timing (phase) of this response varied with stimulus carrier frequency over the entire course of minute-long tone sequences ('phase tracking' of carrier frequency). The length of the time interval over which phase was calculated was systematically varied; significant phase tracking was regularly observed at analysis intervals of <50 ms in length. The right auditory cortex exhibited better phase tracking performance than the left at analysis intervals of 24-240 ms, and frequency dependent phase delays were consistently larger than those predicted by cochlear mechanics. Based on these empirical data, a model of the neural populations responsible for phase tracking suggests that it is produced by a subpopulation ( approximately 25%) of the cells generating the aSSR.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Concurrent encoding of frequency and amplitude modulation in human auditory cortex: MEG evidence.

A natural sound can be described by dynamic changes in envelope (amplitude) and carrier (frequency), corresponding to amplitude modulation (AM) and frequency modulation (FM), respectively. Although the neural responses to both AM and FM sounds are extensively studied in both animals and humans, it is uncertain how they are corepresented when changed simultaneously but independently, as is typic...

متن کامل

Gamma-band activity reflects the metric structure of rhythmic tone sequences.

Relatively little is known about the dynamics of auditory cortical rhythm processing using non-invasive methods, partly because resolving responses to events in patterns is difficult using long-latency auditory neuroelectric responses. We studied the relationship between short-latency gamma-band (20-60 Hz) activity (GBA) and the structure of rhythmic tone sequences. We show that induced (non-ph...

متن کامل

Simultaneously-evoked auditory potentials (SEAP): A new method for concurrent measurement of cortical and subcortical auditory-evoked activity.

Recent electrophysiological work has evinced a capacity for plasticity in subcortical auditory nuclei in human listeners. Similar plastic effects have been measured in cortically-generated auditory potentials but it is unclear how the two interact. Here we present Simultaneously-Evoked Auditory Potentials (SEAP), a method designed to concurrently elicit electrophysiological brain potentials fro...

متن کامل

Analysis of stimulus-related activity in rat auditory cortex using complex spectral coefficients.

The neural mechanisms of sensory responses recorded from the scalp or cortical surface remain controversial. Evoked vs. induced response components (i.e., changes in mean vs. variance) are associated with bottom-up vs. top-down processing, but trial-by-trial response variability can confound this interpretation. Phase reset of ongoing oscillations has also been postulated to contribute to senso...

متن کامل

A novel type of auditory responses: temporal dynamics of 40-Hz steady-state responses induced by changes in sound localization.

Magnetoencephalographic responses to 40-Hz amplitude-modulated tones of 4-s duration were recorded in young, middle-aged, and older healthy participants. Interaural phase difference (IPD) in the sound carrier was changed during stimulus presentation from 0 to 180 degrees , resulting in perceptual change from focal to spacious sound. The stimulus modulation elicited synchronized gamma-band oscil...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cerebral cortex

دوره 14 1  شماره 

صفحات  -

تاریخ انتشار 2004